login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800.
3

%I #14 Sep 08 2022 08:44:58

%S 0,0,0,2,0,4,4,4,6,14,4,14,20,16,16,30,22,38,32,30,44,64,38,50,68,68,

%T 66,92,66,94,94,96,122,130,90,124,154,158,136,174,148,188,194,172,210,

%U 254,196,228,240,248,258,308,282,302,284

%N a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800.

%H G. C. Greubel, <a href="/A049797/b049797.txt">Table of n, a(n) for n = 1..1000</a>

%p seq(add((n+1) mod floor((k+1)/2), k = 3..n), n = 1..60);

%t Table[Sum[Mod[n+1, Floor[(k+1)/2]], {k,3,n}], {n,60}] (* _G. C. Greubel_, Dec 09 2019 *)

%o (PARI) vector(60, n, sum(k=3,n, (n+1)%((k+1)\2)) ) \\ _G. C. Greubel_, Dec 09 2019

%o (Magma) [0,0] cat [ (&+[(n+1) mod Floor((k+1)/2): k in [3..n]]): n in [3..60]]; // _G. C. Greubel_, Dec 09 2019

%o (Sage) [sum( (n+1)%floor((k+1)/2) for k in (3..n)) for n in (1..60)] # _G. C. Greubel_, Dec 09 2019

%o (GAP) List([1..60], n-> Sum([3..n], k-> (n+1) mod Int((k+1)/2)) ); # _G. C. Greubel_, Dec 09 2019

%Y Cf. A049800.

%K nonn

%O 1,4

%A _Clark Kimberling_