login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049771 Triangular array T read by rows: T(n,k) = (k^4 mod n) + (n^4 mod k). 2
0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 2, 0, 1, 4, 3, 4, 2, 0, 1, 3, 5, 5, 3, 2, 0, 1, 0, 2, 0, 2, 4, 2, 0, 1, 8, 0, 5, 5, 3, 9, 2, 0, 1, 6, 2, 6, 5, 10, 5, 6, 2, 0, 1, 6, 5, 4, 10, 10, 7, 5, 12, 2, 0, 1, 4, 9, 4, 2, 0, 3, 4, 9, 10, 2, 0, 1, 4, 4, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

EXAMPLE

Triangle begins as:

  0;

  1, 0;

  1, 2, 0;

  1, 0, 2, 0;

  1, 2, 2, 2, 0;

  1, 4, 3, 4, 2, 0;

  1, 3, 5, 5, 3, 2, 0;

  1, 0, 2, 0, 2, 4, 2, 0;

  1, 8, 0, 5, 5, 3, 9, 2, 0;

MAPLE

seq(seq( `mod`(k^4, n) + `mod`(n^4, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 16 2019

MATHEMATICA

Table[PowerMod[k, 4, n] + PowerMod[n, 4, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 16 2019 *)

PROG

(PARI) T(n, k) = lift(Mod(k, n)^4) + lift(Mod(n, k)^4);

for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 16 2019

(MAGMA) [[Modexp(k, 4, n) + Modexp(n, 4, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 16 2019

(Sage) [[power_mod(k, 4, n) + power_mod(n, 4, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 16 2019

(GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(k, 4, n) + PowerMod(n, 4, k) ))); # G. C. Greubel, Dec 16 2019

CROSSREFS

Cf. A049772.

Sequence in context: A309011 A086713 A275730 * A158944 A156663 A139366

Adjacent sequences:  A049768 A049769 A049770 * A049772 A049773 A049774

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 18:31 EST 2022. Contains 350488 sequences. (Running on oeis4.)