The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049771 Triangular array T read by rows: T(n,k) = (k^4 mod n) + (n^4 mod k). 2
 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 2, 0, 1, 4, 3, 4, 2, 0, 1, 3, 5, 5, 3, 2, 0, 1, 0, 2, 0, 2, 4, 2, 0, 1, 8, 0, 5, 5, 3, 9, 2, 0, 1, 6, 2, 6, 5, 10, 5, 6, 2, 0, 1, 6, 5, 4, 10, 10, 7, 5, 12, 2, 0, 1, 4, 9, 4, 2, 0, 3, 4, 9, 10, 2, 0, 1, 4, 4, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened EXAMPLE Triangle begins as:   0;   1, 0;   1, 2, 0;   1, 0, 2, 0;   1, 2, 2, 2, 0;   1, 4, 3, 4, 2, 0;   1, 3, 5, 5, 3, 2, 0;   1, 0, 2, 0, 2, 4, 2, 0;   1, 8, 0, 5, 5, 3, 9, 2, 0; MAPLE seq(seq( `mod`(k^4, n) + `mod`(n^4, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 16 2019 MATHEMATICA Table[PowerMod[k, 4, n] + PowerMod[n, 4, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 16 2019 *) PROG (PARI) T(n, k) = lift(Mod(k, n)^4) + lift(Mod(n, k)^4); for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 16 2019 (MAGMA) [[Modexp(k, 4, n) + Modexp(n, 4, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 16 2019 (Sage) [[power_mod(k, 4, n) + power_mod(n, 4, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 16 2019 (GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(k, 4, n) + PowerMod(n, 4, k) ))); # G. C. Greubel, Dec 16 2019 CROSSREFS Cf. A049772. Sequence in context: A309011 A086713 A275730 * A158944 A156663 A139366 Adjacent sequences:  A049768 A049769 A049770 * A049772 A049773 A049774 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 18:31 EST 2022. Contains 350488 sequences. (Running on oeis4.)