The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049637 Congruent to 2, 3, 6, 8, 10 or 12 mod 13, but not equal to 3. 1
 2, 6, 8, 10, 12, 15, 16, 19, 21, 23, 25, 28, 29, 32, 34, 36, 38, 41, 42, 45, 47, 49, 51, 54, 55, 58, 60, 62, 64, 67, 68, 71, 73, 75, 77, 80, 81, 84, 86, 88, 90, 93, 94, 97, 99, 101, 103, 106, 107, 110, 112, 114, 116, 119, 120, 123, 125, 127, 129, 132, 133, 136, 138, 140, 142, 145, 146 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) = T(n, 3), array T as in A049627. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1). FORMULA G.f.: 2 - x*(-6-8*x-4*x^2+2*x^3+3*x^4) / ( (1+x)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 26 2015 MATHEMATICA CoefficientList[Series[2 - x*(-6 - 8*x - 4*x^2 + 2*x^3 + 3*x^4)/((1 + x)*(1 + x + x^2)*(x - 1)^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 15 2017 *) LinearRecurrence[{0, 1, 1, 0, -1}, {2, 6, 8, 10, 12, 15}, 70] (* Harvey P. Dale, Apr 21 2019 *) PROG (PARI) x='x+O('x^30); Vec(2 - x*(-6 - 8*x - 4*x^2 + 2*x^3 + 3*x^4)/((1 + x)*(1 + x + x^2)*(x - 1)^2)) \\ G. C. Greubel, Dec 15 2017 CROSSREFS Sequence in context: A157502 A216032 A076300 * A284753 A258663 A166447 Adjacent sequences:  A049634 A049635 A049636 * A049638 A049639 A049640 KEYWORD nonn,easy AUTHOR EXTENSIONS Terms a(38) onward added by G. C. Greubel, Dec 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 15:03 EDT 2021. Contains 345141 sequences. (Running on oeis4.)