The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049593 Primes p for which residue of ((p-1)! + 1) modulo (p + 16) equals 1. 1
 11, 17, 19, 23, 29, 41, 47, 53, 59, 61, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 167, 173, 179, 191, 193, 197, 199, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 347, 349, 353, 359, 379, 383, 389, 397 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p such that p+16 divides (p-1)!. - Robert Israel, Aug 30 2018 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE 11 is in the sequence because 10! + 1 = 3628801 has the form (11+16)k + 1 = 27k + 1 = 27*134400 + 1. MAPLE filter:= proc(p) local L, t, q, s, i, r; if not isprime(p) then return false fi; for s in ifactors(p+16)[2] do t:= 0: q:= s[1]; for i from 1 do r:= floor((p-1)/q^i); if r = 0 then return false fi; t:= t+r; if t >= s[2] then break fi; od; od; true end proc: select(filter, [seq(i, i=3..1000, 2)]); # Robert Israel, Aug 30 2018 MATHEMATICA Reap[For[p = 2, p < 1000, p = NextPrime[p], If[Divisible[(p - 1)!, p + 16], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jun 09 2020 *) PROG (PARI) isok(p) = isprime(p) && (Mod((p-1), (p+16)) == 0); \\ Michel Marcus, Jun 09 2020 CROSSREFS Sequence in context: A038966 A050778 A316100 * A216664 A019412 A178641 Adjacent sequences: A049590 A049591 A049592 * A049594 A049595 A049596 KEYWORD nonn AUTHOR Labos Elemer STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 18:03 EDT 2024. Contains 374585 sequences. (Running on oeis4.)