login
Primes p such that x^51 = 2 has a solution mod p.
2

%I #15 Sep 08 2022 08:44:58

%S 2,3,5,11,17,23,29,31,41,43,47,53,59,71,83,89,101,107,109,113,127,131,

%T 149,157,167,173,179,191,197,223,227,229,233,251,257,263,269,277,281,

%U 283,293,311,317,347,353,359,383,389,397,401,419,431,433,439,449,457

%N Primes p such that x^51 = 2 has a solution mod p.

%C Complement of A059640 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012

%H R. J. Mathar, <a href="/A049583/b049583.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Pri#smp">Index entries for related sequences</a>

%t ok[p_]:= Reduce[Mod[x^51 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *)

%o (Magma) [p: p in PrimesUpTo(500) | exists(t){x : x in ResidueClassRing(p) | x^51 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012

%Y Cf. A000040, A059640.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_