login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p such that x^22 = 2 has a solution mod p.
2

%I #15 Sep 08 2022 08:44:58

%S 2,7,17,31,41,47,71,73,79,97,103,113,127,137,151,167,191,193,223,233,

%T 239,241,257,263,271,281,311,313,337,359,367,383,401,409,431,433,439,

%U 449,457,479,487,503,521,569,577,593,599,601,607,631,641,647,673,719

%N Primes p such that x^22 = 2 has a solution mod p.

%C Complement of A059311 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012

%H R. J. Mathar, <a href="/A049554/b049554.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Pri#smp">Index entries for related sequences</a>

%t ok[p_]:= Reduce[Mod[x^22 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[150]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *)

%o (Magma) [p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^22 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012

%Y Cf. A000040, A059311.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_