%I #6 Mar 31 2012 13:19:59
%S 1,7,29,103,405,1599,6141,23863,92773,359791,1396493,5421415,21041397,
%T 81670431,317005341,1230432919,4775854213,18537264079,71951401517,
%U 279275580103,1083993881877,4207466012031,16331061009213
%N Row sums of triangle A049325.
%C p(3,x) is row polynomial corresponding to triangle row A033842(3,m).
%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%F G.f.: x*(1+6*x+16*x^2+16*x^3)/(1-x-6*x^2-16*x^3-16*x^4) = x*p(3, x)/(1-x*p(3, x)) with x*p(3, x) G.f. for first column of A049325.
%K easy,nonn
%O 1,2
%A _Wolfdieter Lang_