Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Nov 30 2021 11:37:58
%S 1,0,1,-2,0,1,0,-8,0,1,24,0,-20,0,1,0,184,0,-40,0,1,-720,0,784,0,-70,
%T 0,1,0,-8448,0,2464,0,-112,0,1,40320,0,-52352,0,6384,0,-168,0,1,0,
%U 648576,0,-229760,0,14448,0,-240,0,1,-3628800,0,5360256,0,-804320,0,29568,0,-330,0,1
%N Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.
%C |T(n,k)| gives the sum of the M_2 multinomial numbers (A036039) for those partitions of n with exactly k odd parts. E.g.: |T(6,2)| = 144 + 40 = 184 from the partitions of 6 with exactly two odd parts, namely (1,5) and (3,3), with M_2 numbers 144 and 40. Proof via the general Jabotinsky triangle formula for |T(n,k)| using partitions of n into k parts and their M_3 numbers (A036040). Then with the special e.g.f. of the (unsigned) k=1 column, f(x):= arctanh(x), only odd parts survive and the M_3 numbers are changed into the M_2 numbers. For the Knuth reference on Jabotinsky triangles see A039692. - _Wolfdieter Lang_, Feb 24 2005 [The first two sentences have been corrected thanks to the comment by _José H. Nieto S._ given below. - _Wolfdieter Lang_, Jan 16 2012]
%C |T(n,k)| gives the number of permutations of {1,2,...,n} (degree n permutations) with the number of odd cycles equal to k. E.g.: |T(5,3)|= 20 from the 20 degree 5 permutations with cycle structure (.)(.)(...). Proof: Use the cycle index polynomial for the symmetric group S_n (see the M_2 array A036039 or A102189) together with the partition interpretation of |T(n,k)| given above. - _Wolfdieter Lang_, Feb 24 2005 [See the following _José H. Nieto S._ correction. - _Wolfdieter Lang_, Jan 16 2012]
%C The first sentence of the above comment is inexact, it should be "|T(n,k)| gives the number of degree n permutations which decompose into exactly k odd cycles". The number of degree n permutations with k odd cycles (and, possibly, other cycles of even length) is given by A060524. - _José H. Nieto S._, Jan 15 2012
%C The unsigned triangle with e.g.f. exp(x*arctanh(z)) is the associated Jabotinsky type triangle for the Sheffer type triangle A060524. See the comments there. - _Wolfdieter Lang_, Feb 24 2005
%C Also the Bell transform of the sequence (-1)^(n/2)*A005359(n) without column 0. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 28 2016
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.
%H Peter Bala, <a href="/A112007/a112007_Bala.txt">Diagonals of triangles with generating function exp(t*F(x)).</a>
%H Steven Finch, <a href="https://arxiv.org/abs/2111.14487">Rounds, Color, Parity, Squares</a>, arXiv:2111.14487 [math.CO], 2021.
%H Kruchinin Vladimir Victorovich, <a href="https://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Mittag-LefflerPolynomial.html">Mittag-Leffler Polynomial</a>
%F E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(n, k) x^n/n!.
%F T(n,k) = ((-1)^((3*n+k)/2)*n!/2^k)*Sum_{i=k..n} 2^i*binomial(n-1,i-1)*Stirling1(i,k)/i!. - _Vladimir Kruchinin_, Feb 11 2011
%F E.g.f.: exp(t*arctan(x)) = 1 + t*x + t^2*x^2/2! + t*(t^2-2)*x^3/3! + .... The unsigned row polynomials are the Mittag-Leffler polynomials M(n,t/2). See A137513. The compositional inverse (with respect to x) (x-t/2*log((1+x)/(1-x)))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3!+ (24*t+16*t^2)/(1-t)^7*x^5/5! + .... The rational functions in t generate the (unsigned) diagonals of the table. See the Bala link. - _Peter Bala_, Dec 04 2011
%e Triangle begins:
%e 1;
%e 0, 1;
%e -2, 0, 1;
%e 0, -8, 0, 1;
%e 24, 0, -20, 0, 1;
%e 0, 184, 0, -40, 0, 1;
%e ...
%e O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
%p A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # _R. J. Mathar_, Feb 14 2011
%p # The function BellMatrix is defined in A264428.
%p # Adds (1,0,0,0, ..) as column 0.
%p BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # _Peter Luschny_, Jan 28 2016
%t t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* _Jean-François Alcover_, Dec 06 2011, after _Vladimir Kruchinin_ *)
%t BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
%t rows = 12;
%t M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows];
%t Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 23 2018, after _Peter Luschny_ *)
%o (PARI) T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)
%Y Essentially same as A008309, which is the main entry for this sequence.
%Y Row sums (unsigned) give A000246(n); signed row sums give A002019(n), n>=1. A137513.
%K sign,tabl,nice
%O 1,4
%A _N. J. A. Sloane_
%E Additional comments from _Michael Somos_