login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049112
2-ranks of difference sets constructed from Glynn type I hyperovals.
3
1, 1, 3, 7, 13, 23, 45, 87, 167, 321, 619, 1193, 2299, 4431, 8541, 16463, 31733, 61167, 117903, 227265, 438067, 844401, 1627635, 3137367, 6047469, 11656871, 22469341, 43311047, 83484727, 160921985, 310187099, 597904857, 1152498667
OFFSET
1,3
LINKS
R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119.
Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Supplement to "Gauss Sums, Jacobi Sums and p-ranks ..."
Q. Xiang, On Balanced Binary Sequences with Two-Level Autocorrelation Functions, IEEE Trans. Inform. Theory 44 (1998), 3153-3156.
FORMULA
G.f.: (1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5).
a(n+1) = a(n) + a(n-1) + a(n-2) + a(n-3) - 1, n >= 5.
MAPLE
L := 1, 1, 3, 7, 13: for i from 6 to 140 do l := nops([ L ]): L := L, op(l, [ L ])+op(l-1, [ L ])+op(l-2, [ L ])+op(l-3, [ L ])-1: od: [ L ];
MATHEMATICA
Join[{1, 1, 3, 7}, Table[a[1]=3; a[2]=1; a[3]=3; a[4]=7; a[i]=a[i-1]+a[i-2] +a[i-3]+a[i-4] -1, {i, 5, 40}]]
CoefficientList[Series[(1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5), {x, 0, 40}], x] (* G. C. Greubel, Jul 10 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5)) \\ G. C. Greubel, Jul 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5) )); // G. C. Greubel, Jul 10 2019
(Sage) ((1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
(GAP) a:=[1, 3, 7, 13];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4] -1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
CROSSREFS
Sequence in context: A173168 A048462 A048465 * A349793 A100720 A297852
KEYWORD
nonn,easy
AUTHOR
Christian Krattenthaler (kratt(AT)ap.univie.ac.at)
STATUS
approved