Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 18 2024 20:19:43
%S 1,2,3,3,4,3,4,4,4,4,5,4,5,4,5,5,6,4,5,5,5,5,6,5,6,5,5,5,6,5,6,6,6,6,
%T 6,5,6,5,6,6,7,5,6,6,6,6,7,6,6,6,7,6,7,5,7,6,6,6,7,6,7,6,6,7,7,6,7,7,
%U 7,6,7,6,7,6,7,6,7,6,7,7,6,7,8,6,8,6,7,7,8,6,7,7,7,7,7,7,8,6,7,7,8,7,8,7,7
%N a(n) is the number of iterations of Euler phi function needed to reach 1 starting at n (n is counted).
%H Reinhard Zumkeller, <a href="/A049108/b049108.txt">Table of n, a(n) for n = 1..10000</a>
%F By the definition of a(n) we have for n >= 2 the recursion a(n) = a(Phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
%F log_3 n << a(n) << log_2 n. - _Charles R Greathouse IV_, Feb 07 2012
%e If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=8.
%p A049108 := proc(n)
%p local a, e;
%p e := n ;
%p a :=0 ;
%p while e > 1 do
%p a := a+1 ;
%p e := numtheory[phi](e) ;
%p end do:
%p 1+a;
%p end proc:
%p seq(A049108(n),n=1..60) ; # _R. J. Mathar_, Sep 08 2021
%t f[n_] := Length[NestWhileList[ EulerPhi, n, # != 1 &]]; Array[f, 105] (* _Robert G. Wilson v_, Feb 07 2012 *)
%o (PARI) a(n)=my(t=1);while(n>1,t++;n=eulerphi(n));t \\ _Charles R Greathouse IV_, Feb 07 2012
%Y Cf. A000010, A007755. Equals A003434 + 1. Row lengths of A375478.
%K nonn,nice,easy
%O 1,2
%A _Labos Elemer_