Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Feb 19 2024 01:55:39
%S 1,2,3,4,5,6,7,8,9,15,18,24,45,48,135,144,288,378,476,756,864,1575,
%T 39366,69984,139968
%N Numbers m such that m divides (product of digits of m) * (sum of digits of m).
%C Next term if it exists is greater than 4*10^7. - _Michel ten Voorde_
%C Sequence is finite and bounded above by 10^84, since if 10^k <= n < 10^(k+1) (product of digits of n)*(sum of digits of n) <= k*9^(k+2) which is less than 10^k for k >= 84. - _Henry Bottomley_, May 18 2000
%C Numbers with a zero digit are not permitted. - _Harvey P. Dale_, Jul 16 2011
%C No further terms to 2.5*10^9. - _Robert G. Wilson v_, Jul 17 2011
%C Sequence is complete. - _Giovanni Resta_, Mar 20 2013
%C If product of digits is performed on nonzero digits only, then 1088 is also in the sequence. - _Giovanni Resta_, Mar 22 2013
%H Giovanni Resta, <a href="/A049101/a049101.txt">Method used to compute the full sequence</a>
%e 139968 is in the sequence since it divides (1*3*9*9*6*8) * (1+3+9+9+6+8). - _Giovanni Resta_, Mar 20 2013
%t okQ[n_]:=Module[{idn=IntegerDigits[n]},!MemberQ[idn,0] && Divisible[ (Total[idn]*Times@@idn),n]] (* _Harvey P. Dale_, Jul 16 2011 *)
%t (* full sequence *) dig[nD_] := Block[{ric, sol = {}, check}, check[mu_, minN_] := Block[{di = DigitCount@minN, k = 1, r}, While[(r = mu/k) >= minN, If[IntegerQ[r] && DigitCount[r] == di, AppendTo[sol, r]]; k++]]; ric[n_, prod_, sum_, lastd_, cnt_] := Block[{t}, If[cnt == nD, check[prod*sum, n], Do[t = nD - cnt - 1; If[n*10^(t+1) <= d*prod*9^t*(sum + d + 9*t), ric[10*n + d, d*prod, d + sum, d, cnt + 1], Break[]], {d, 9, lastd, -1}]]]; ric[0, 1, 0, 1, 0]; Print["nDig=", nD, " sol=", sol = Sort@sol]; sol]; Flatten[dig /@ Range[84]] (* _Giovanni Resta_, Mar 20 2013 *)
%Y Cf. A038369, A049102, A049105, A049106.
%K nonn,base,fini,full
%O 1,2
%A _Olivier Gérard_