Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Dec 10 2022 09:29:17
%S 1,3,13,57,249,1087,4745,20713,90417,394691,1722917,7520929,32830585,
%T 143313055,625594449,2730863665,11920848033,52037243619,227154537661,
%U 991581805481,4328482658041,18894822411423,82480245888473,360045244866137,1571680309076689,6860746056673507
%N Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.
%H Vincenzo Librandi, <a href="/A049086/b049086.txt">Table of n, a(n) for n = 0..1000</a>
%H Mudit Aggarwal and Samrith Ram, <a href="https://arxiv.org/abs/2206.04437">Generating functions for straight polyomino tilings of narrow rectangles</a>, arXiv:2206.04437 [math.CO], 2022.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1311.6135">Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings</a>, arXiv:1311.6135 [math.CO], 2013, Table 19.
%H R. J. Mathar, <a href="https://arxiv.org/abs/1406.7788">Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices</a>, arXiv:1406.7788 (2014), eq. (10)
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3,1).
%F a(n) = 5*a(n-1) - 3*a(n-2) + a(n-3).
%F a(n)/a(n-1) tends to 4.3652300134..., an eigenvalue of the matrix M and an inverse root of the polynomial x^3 - 3x^2 + 5x - 1. [a(n-2), a(n-1), a(n)] = M^n * [1 1 1], where M = the 3 X 3 matrix [ 5 -3 1 / 1 0 0 / 0 1 0]. E.g., a(3), a(4), a(5) = 57, 249, 1087. M^5 * [1 1 1] = [57, 249, 1087] - _Gary W. Adamson_, Apr 25 2004
%F G.f.: (1-x)^2/(1-5*x+3*x^2-x^3). - _Colin Barker_, Feb 03 2012
%F a(n) = Sum_{k=0..n} A109955(n,k)*2^k. - _Philippe Deléham_, Feb 18 2012
%F a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27). - _Peter Luschny_, Dec 09 2020
%p a[0]:=1:a[1]:=3:a[2]:=13: for n from 3 to 25 do a[n]:=5*a[n-1]-3*a[n-2]+a[n-3] od: seq(a[n],n=0..25); # _Emeric Deutsch_, Feb 15 2005
%p a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27):
%p seq(simplify(a(n)), n=0..25); # _Peter Luschny_, Dec 09 2020
%t LinearRecurrence[{5,-3,1},{1,3,13},50] (* _Vincenzo Librandi_, Feb 18 2012 *)
%t CoefficientList[Series[(1-x)^2/(1-5x+3x^2-x^3), {x, 0, 40}], x] (* _M. Poyraz Torcuk_, Nov 06 2021 *)
%Y Cf. A000930, A005178.
%K easy,nonn
%O 0,2
%A _Allan C. Wechsler_
%E More terms from _Emeric Deutsch_, Feb 15 2005