login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the product of divisors of k is a cube.
2

%I #26 Jul 01 2022 05:27:00

%S 1,4,8,9,12,18,20,25,27,28,32,36,44,45,49,50,52,60,63,64,68,72,75,76,

%T 84,90,92,96,98,99,100,108,116,117,121,124,125,126,132,140,144,147,

%U 148,150,153,156,160,164,169,171,172,175,180,188,196,198,200,204,207

%N Numbers k such that the product of divisors of k is a cube.

%C From _Robert Israel_, Jun 30 2014: (Start)

%C n is in the sequence iff either

%C 1) for at least one prime p dividing n, the p-adic order of n is congruent to 2 mod 3, or

%C 2) for all primes p dividing n, the p-adic order of n is congruent to 0 mod 3 (and thus n is a cube). (End)

%C The asymptotic density of this sequence is 1 - zeta(3)/zeta(2) = 0.2692370305... . - _Amiram Eldar_, Jul 01 2022

%H Robert Israel, <a href="/A048944/b048944.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DivisorProduct.html">Divisor Product</a>.

%p filter:= proc(n) local F;

%p F:= ifactors(n)[2];

%p F:= convert(map(t -> t[2] mod 3, F),set);

%p has(F,2) or F = {0} or F = {};

%p end proc:

%p select(filter, [$1..1000]); # _Robert Israel_, Jun 30 2014

%t Select[Range[250],IntegerQ[Surd[Times@@Divisors[#],3]]&] (* _Harvey P. Dale_, Feb 05 2019 *)

%t q[n_] := AnyTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 2 &]; m = 6; Union[Range[m]^3, Select[Range[m^3], q]] (* _Amiram Eldar_, Jul 01 2022 *)

%o (PARI) is(n)=ispower(n,3) || #select(e->e%3==2, factor(n)[,2]) \\ _Charles R Greathouse IV_, Sep 18 2015

%Y Disjoint union of A000578 and A059269.

%Y Cf. A007955.

%K nonn

%O 1,2

%A _Eric W. Weisstein_