login
A convolution triangle of numbers obtained from A034255.
7

%I #8 Mar 31 2012 13:19:59

%S 1,10,1,120,20,1,1560,340,30,1,21216,5520,660,40,1,297024,88032,12880,

%T 1080,50,1,4243200,1392768,236448,24640,1600,60,1,61526400,21952320,

%U 4187232,512464,41800,2220,70,1,902387200,345396480,72452160,10060416

%N A convolution triangle of numbers obtained from A034255.

%C a(n,m)=: s2(5; n,m), generalizing s2(2; n,m) := A007318(n-1,m-1) (Pascal), s2(3; n,m) := A035324(n,m), s2(4; n,m)= A035529.

%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%F a(n+1, m) = 4*(4*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.

%F G.f. for column m: ((-1+(1-16*x)^(-1/4))/4)^m.

%Y Cf. A035529, A034255. Row sums: A048965(n), n >= 1.

%K easy,nonn,tabl

%O 0,2

%A _Wolfdieter Lang_