Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 31 2022 15:57:07
%S 4,3,3,4,3,4,3,4,4,4,7,4,8,4,4,4,7,4,7,2,7,2,6,2,2,2,7,2,5,2,5,2,8,2,
%T 2,2,5,2,7,3,6,3,7,3,3,3,6,3,8,2,7,2,6,2,2,2,7,2,5,2,5,2,8,2,2,2,5,2,
%U 7,3,6,3,7,3,3,3,8,3,6,2,7,2,6,2,2,2,7,2,5,1,6,1,7,1,1,1,4,1,6,4,10,4,8,4,4
%N Number of primes (different from n) that can be produced by altering one digit of decimal expansion of n (without changing the number of digits).
%C a(A192545(n)) = 0. - _Reinhard Zumkeller_, Jul 05 2011
%H Reinhard Zumkeller, <a href="/A048853/b048853.txt">Table of n, a(n) for n = 1..10000</a>
%e Altering the number 13 gives eight primes: 11, 17, 19, 23, 43, 53, 73, 83, so a(13)=8.
%p A048853 := proc(n::integer) local resul,ddigs,d,c,tmp ; resul := 0 ; ddigs := convert(n,base,10) ; for d from 1 to nops(ddigs) do for c from 0 to 9 do if c = 0 and d = nops(ddigs) then continue ; else if c <> op(d,ddigs) then tmp := [op(1..d-1,ddigs),c,op(d+1..nops(ddigs),ddigs)] ; tst := sum(op(i,tmp)*10^(i-1),i=1..nops(tmp)) ; if isprime(tst) then resul := resul+1 ; fi ; fi ; fi ; od : od ; RETURN(resul) ; end: for n from 1 to 90 do printf("%d,",A048853(n)) ; od ; # _R. J. Mathar_, Apr 25 2006
%t a[n_] := Module[{idn = IntegerDigits[n], id, np = 0}, Do[id = idn; If[ id[[j]] != k, id[[j]] = k; If[ id[[1]] != 0 && PrimeQ[ FromDigits[id]], np = np + 1]], {j, 1, Length[idn]}, {k, 0, 9}]; np]; Table[a[n], {n, 1, 105}] (* _Jean-François Alcover_, Dec 01 2011 *)
%o (Haskell)
%o import Data.List (inits, tails, nub)
%o a048853 n = (sum $ map (a010051 . read) $ tail $ nub $ concat $ zipWith
%o (\its tls -> map ((\xs ys d -> xs ++ (d:ys)) its tls) "0123456789")
%o (map init $ tail $ inits $ show n) (tail $ tails $ show n)) - a010051 n
%o -- _Reinhard Zumkeller_, Jul 05 2011
%o (Python)
%o from sympy import isprime
%o def h1(n): # hamming distance 1 neighbors of n, not starting with 0
%o s = str(n); d = "0123456789"; L = len(s)
%o yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L) if c!=s[i] and not (i==0 and c=="0"))
%o def a(n): return sum(1 for k in h1(n) if isprime(k))
%o print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Jul 31 2022
%Y Cf. A050652-A050673.
%Y Cf. A010051, A158124.
%K base,nonn,easy,nice
%O 1,1
%A _G. L. Honaker, Jr._ and _Patrick De Geest_