login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for Sum_{m>=0} 1/(2^2^m - 1).
2

%I #15 Aug 03 2024 13:24:49

%S 1,2,2,9,1,3,5,1,2,1,1,1,1,8,2,1,1,2,1,12,19,24,1,18,12,1,2,1,1,2,2,1,

%T 1,1,1,2,1,8,1,1,5,2,5,8,1,4,2,5,1,1,8,1,2,1,1,1,1,2,2,1,1,2,1,12,18,

%U 1,7,2,1,1,2,4,1,5,4,2,1,1,1,1,1,4,64,14,1,6,3,1,6

%N Continued fraction for Sum_{m>=0} 1/(2^2^m - 1).

%H Harry J. Smith, <a href="/A048650/b048650.txt">Table of n, a(n) for n = 0..19999</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%e 1.40393682788217832057620607413720935453...

%e 1.403936827882178320576206074... = 1 + 1/(2 + 1/(2 + 1/(9 + 1/(1 + ...)))). - _Harry J. Smith_, May 03 2009

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=suminf(m=0, 1/(2^2^m - 1)); x=contfrac(x); for (n=1, 20000, write("b048650.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 07 2009

%Y Cf. A048164, A048649 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _N. J. A. Sloane_

%E Deleted old PARI program. - _Harry J. Smith_, May 20 2009

%E Offset changed by _Andrew Howroyd_, Aug 03 2024