Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 03 2015 03:21:54
%S 3,5,9,6,10,17,33,18,65,12,129,34,257,66,20,130,513,1025,36,258,2049,
%T 24,4097,68,8193,514,40,1026,16385,132,32769,2050,260,65537,72,131073,
%U 4098,8194,136,262145,16386,524289,48,516,1048577,1028,2097153,32770
%N Binary encoding of A006881, numbers with two distinct prime divisors.
%H Michael De Vlieger, <a href="/A048639/b048639.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = 2^(i-1) + 2^(j-1), where A006881(n) = p_i*p_j (p_i and p_j stand for the i-th and j-th primes respectively, where the first prime is 2).
%p encode_A006881 := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if((0 <> mobius(i)) and (4 = tau(i))) then b := [ op(b), bef(i) ]; fi; od: RETURN(b); end; # see A048623 for bef
%t Total[2^PrimePi@ # &@ (Map[First, FactorInteger@ #] - 1)] & /@ Select[Range@ 160, SquareFreeQ@ # && PrimeOmega@ # == 2 &] (* _Michael De Vlieger_, Oct 01 2015 *)
%o (PARI) lista(nn) = {for (n=1, nn, if (issquarefree(n) && bigomega(n)==2, f = factor(n); x = sum(k=1, #f~, 2^(primepi(f[k,1])-1)); print1(x, ", ");););} \\ _Michel Marcus_, Oct 01 2015
%Y Permutation of A018900. Cf. A048640, A048623.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jul 14 1999