Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #29 Jul 25 2024 10:07:34
%S 8,108,878,870,8813,27924,84129,882483,2788865,7601169,88190572,
%T 421518419,4204014483,26034169427,42305694389,88022598108,
%U 546605779129,2788866736108,69048807207508,98844816642745,88187696578,2516,5270458024477168,26772616052167516,166654612230648203,521323093463907254
%N a(n) is the smallest value of m such that A002378(m), the m-th oblong number, contains exactly n 7's.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PronicNumber.html">Pronic Number</a>
%e From Jesse Sealand, Oct 05 2019: (Start)
%e a(1) = 8 since A002378(8) = 72;
%e a(2) = 108 since A002378(36) = 11772;
%e a(3) = 878 since A002378(182) = 771762;
%e a(4) = 870 since A002378(1817) = 757770, etc.
%e (End).
%o (Python)
%o def A048543(n):
%o k, m = 1, 2
%o while True:
%o if str(m).count('7') == n:
%o return k
%o k += 1
%o m += 2*k # _Chai Wah Wu_, Mar 23 2018
%Y Cf. A048544, A002378.
%Y Cf. A048529, A048531, A048533, A048535, A048537, A048539, A048541, A048545, A048547.
%K nonn,base
%O 1,1
%A _Patrick De Geest_, May 15 1999
%E a(13)-a(16) from _Lars Blomberg_, Jun 10 2011
%E Name edited by _Jesse Sealand_, Oct 05 2019
%E a(17) from _Giovanni Resta_, Oct 09 2019
%E a(18)-a(25) from _Max Alekseyev_, Jul 25 2024