login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(7,n), array T given by A048483.
6

%I #52 Mar 28 2024 17:25:47

%S 1,9,25,57,121,249,505,1017,2041,4089,8185,16377,32761,65529,131065,

%T 262137,524281,1048569,2097145,4194297,8388601,16777209,33554425,

%U 67108857,134217721,268435449,536870905,1073741817,2147483641,4294967289,8589934585

%N a(n) = T(7,n), array T given by A048483.

%C n-th difference of a(n), a(n-1), ..., a(0) is (8, 8, 8, ...).

%H Colin Barker, <a href="/A048490/b048490.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F a(n) = 8 * 2^n - 7. - _Ralf Stephan_, Jan 09 2009

%F Equals binomial transform of [1, 8, 8, 8, ...]. - _Gary W. Adamson_, Apr 29 2008

%F a(n) = 2*a(n-1) + 7 for n > 0, a(0)=1. - _Vincenzo Librandi_, Aug 06 2010

%F For n>=1, a(n) = 6<+>(n+3), where the operation <+> is defined in A206853. - _Vladimir Shevelev_, Feb 17 2012

%F From _Colin Barker_, Nov 26 2014: (Start)

%F a(n) = 3*a(n-1) - 2*a(n-2).

%F G.f.: (6*x+1) / ((x-1)*(2*x-1)). (End)

%t a=1; lst={a}; k=8; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Dec 16 2008 *)

%o (PARI) Vec((6*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ _Colin Barker_, Nov 26 2014

%K nonn,easy

%O 0,2

%A _Clark Kimberling_

%E More terms from _Colin Barker_, Nov 26 2014