login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)^3 is smallest cube containing exactly n 3's.
10

%I #17 Mar 20 2020 22:30:41

%S 17,7,179,477,707,6935,15477,44197,535677,693368,2028209,7566137,

%T 32215777,62446477,322024127,2027400657,5171307877,15373346477,

%U 28575396477,237304541491,322033146477,5105022776547,4536383124177

%N a(n)^3 is smallest cube containing exactly n 3's.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>

%e 477^3 = 108531333 is the first cube containing four 3's, so a(4) = 477.

%t nsmall = Table[Infinity, 15];

%t For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 3];

%t If[nsmall[[n0]] > i, nsmall[[n0]] = i]];

%t Cases[nsmall, _?NumberQ] (* _Robert Price_, Mar 20 2020 *)

%Y Cf. A036530, A048365, A048366, A048367, A048369, A048370, A048371, A048372, A048373, A048374.

%K nonn,base,more

%O 1,1

%A _Patrick De Geest_, Mar 15 1999

%E a(14)-a(16) from Simon Nickerson (simonn(AT)maths.bham.ac.uk), Aug 12 2005

%E a(17)-a(20) from _Lars Blomberg_, Jun 12 2011

%E a(21)-a(23) from _Giovanni Resta_, Jun 29 2018