Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jul 26 2024 17:14:14
%S 0,24,200,775,2000,10000,20000,100000,200000,1000000,2000000,10000000,
%T 20000000,100000000,200000000,1000000000,2000000000,10000000000,
%U 20000000000,100000000000,200000000000,1000000000000,2000000000000,10000000000000,20000000000000,100000000000000
%N a(n) is the index of the smallest triangular number containing exactly n 0's.
%H Chai Wah Wu, <a href="/A048355/b048355.txt">Table of n, a(n) for n = 1..100</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,10).
%F From _Bernard Schott_, Mar 04 2019: (Start)
%F for n odd >= 5, a(n) = 2 * 10^((n+1)/2),
%F for n even >= 6, a(n) = 10^((n+2)/2).
%F (End)
%F From _Colin Barker_, Mar 25 2020: (Start)
%F G.f.: x^2*(24 + 200*x + 535*x^2 + 2250*x^4) / (1 - 10*x^2).
%F a(n) = 10*a(n-2) for n>4.
%F (End)
%e From _Bernard Schott_, Mar 04 2019: (Start)
%e a(2) = 24: T(24) = 300 which contains exactly two 0's.
%e a(6) = 10000: T(10000) = 50005000 which contains exactly six 0's.
%e a(7) = 20000: T(20000) = 200010000 which contains exactly seven 0's.
%e (End)
%t nsmall = Table[Infinity, 20];
%t For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
%t n0 = Count[IntegerDigits[p], 0];
%t If[nsmall[[n0]] > i, nsmall[[n0]] = i]];
%t ReplaceAll[nsmall, Infinity -> "?"] (* _Robert Price_, Mar 22 2020 *)
%t LinearRecurrence[{0,10},{0,24,200,775,2000,10000},30] (* _Harvey P. Dale_, Jul 26 2024 *)
%o (PARI) Vec(x^2*(24 + 200*x + 535*x^2 + 2250*x^4) / (1 - 10*x^2) + O(x^30)) \\ _Colin Barker_, Mar 25 2020
%Y Cf. A000217, A036517.
%K nonn,base,easy
%O 1,2
%A _Patrick De Geest_, Mar 15 1999
%E a(16)-a(19) from _Lars Blomberg_, May 13 2011
%E a(20)-a(26) from _Chai Wah Wu_, Mar 04 2019