login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048296
Continued fraction for Artin's constant.
7
0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, 1, 1, 2, 1, 4, 2, 3, 1, 17, 1, 1, 1, 6, 42, 1, 3, 1, 1, 4, 1, 1, 1, 1, 1, 2, 4, 5, 4, 1, 26, 1, 1, 74, 1, 1, 2, 1, 2, 2, 1, 1, 10, 1
OFFSET
0,2
REFERENCES
See A005596 for further references.
EXAMPLE
artin = 0.37395581361920228805... = 0 + 1/(2 + 1/(1 + 1/(2 + 1/(14 + ...)))). - Harry J. Smith, Apr 23 2009
MATHEMATICA
digits = 105; m0 = 1000; dm = 100; Clear[s]; r[n_] := -1 + Fibonacci[n-1] + Fibonacci[n+1]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; A = s[m]; ContinuedFraction[A, 93] (* Jean-François Alcover, Apr 15 2016 *)
PROG
(PARI) contfrac(prodeulerrat(1-1/(p^2-p))) \\ Amiram Eldar, Mar 12 2021
CROSSREFS
Cf. A005596.
Sequence in context: A052579 A266314 A153908 * A016542 A242085 A007402
KEYWORD
cofr,nonn,nice
AUTHOR
Fred Lunnon and Simon Plouffe, Dec 11 1999
STATUS
approved