%I #20 Jan 29 2023 14:59:53
%S 3,7,1,1,1,1,2,1,3,1,2,1,1,2,2,2,2,1,2,1,1,3,1,4,2,6,6,1,2,2,6,3,5,1,
%T 1,6,8,1,7,1,2,3,7,1,2,1,1,1,1,1,3,1,1,8,1,1,2,1,6,1,1,5,2,2,3,1,2,4,
%U 4,1,1,1,2,2,1,4,1,2,1,2,1,3,1,2,1,1,2,5,4,1,2,2,8,1,5,2,2,1,4,1,1,8
%N 1-digit terms in the continued fraction for Pi.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction.</a>
%e A001203 begins (3, 7, 15, 1, 292, 1, ...) so sequence begins (3, 7, 1, 1, ...).
%t Select[ContinuedFraction[Pi,200],#<10&] (* _Harvey P. Dale_, Jan 29 2023 *)
%Y Cf. A001203, A048293.
%K nonn,base,less
%O 1,1
%A _Eric W. Weisstein_