Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #82 Jan 16 2024 08:11:27
%S 1,1,7,265,41503,24997921,57366997447,505874809287625,
%T 17343602252913832063,2334958727565749108488321,
%U 1243237913592275536716800402887,2630119877024657776969635243647463625,22170632855360952977731028744522744983195423
%N Number of {0,1} n X n matrices with no zero rows or columns.
%C Number of relations on n labeled points such that for every point x there exists y and z such that xRy and zRx.
%C Also the number of edge covers in the complete bipartite graph K_{n,n}. - _Eric W. Weisstein_, Apr 24 2017
%C Counts labeled digraphs (loops allowed, no multiarcs) on n nodes where each indegree and each outdegree is >= 1. The corresponding sequence for unlabeled digraphs (1, 5, 55, 1918,... for n >= 1) seems not to be in the OEIS. - _R. J. Mathar_, Nov 21 2023
%C These relations form a subsemigroup of the semigroup of all binary relations on [n]. The zero element is the universal relation (all 1's matrix). See Schwarz link. - _Geoffrey Critzer_, Jan 15 2024
%D Brendan McKay, Posting to sci.math.research, Jun 14 1999.
%H T. D. Noe, <a href="/A048291/b048291.txt">Table of n, a(n) for n = 0..32</a>
%H H. Cheballah, S. Giraudo, and R. Maurice, <a href="http://arxiv.org/abs/1306.6605">Combinatorial Hopf algebra structure on packed square matrices</a>, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
%H David Dolžan and Gabriel Verret, <a href="https://arxiv.org/abs/1908.04614">The automorphism group of the zero-divisor digraph of matrices over an antiring</a>, arXiv:1908.04614 [math.AC], 2019.
%H R. J. Mathar, <a href="/A247158/a247158.pdf">The number of nXm matrices with at most k 1's in each row or column</a>, (2014).
%H Steven Schlicker, Roman Vasquez, and Rachel Wofford, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Wofford/wofford4.html">Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
%H Stefan Schwarz, <a href="https://dml.cz/handle/10338.dmlcz/101153">The semigroup of fully indecomposable relations and Hall relations</a>, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
%H R. Tauraso, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Tauraso/tauraso18.html">Edge cover time for regular graphs</a>, JIS 11 (2008) 08.4.4.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCover.html">Edge Cover</a>.
%F a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
%F From _Vladeta Jovovic_, Feb 23 2008: (Start)
%F E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
%F a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
%F a(n) ~ 2^(n^2). - _Vaclav Kotesovec_, Jul 02 2014
%F a(n) = Sum_{s=0..n-1} binomial(n,s)*(-1)^s*A092477(n,n-s), n > 0. - _R. J. Mathar_, Nov 18 2023
%e a(2) = 7: |01| |01| |10| |10| |11| |11| |11|
%e |10| |11| |01| |11| |01| |10| |11|.
%p seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # _Robert FERREOL_, Mar 10 2017
%t Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* _Vaclav Kotesovec_, Jul 02 2014 *)
%o (PARI) a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
%o (Python)
%o import math
%o f = math.factorial
%o def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # _Indranil Ghosh_, Mar 14 2017
%Y Cf. A054976, A104602, A283624, A287065, A173403.
%Y Cf. A055601, A055599, A104601, A086193 (traceless, no loops), A086206, A322661 (adj. matr. undirected edges).
%Y Diagonal of A183109.
%K nonn,easy,nice
%O 0,3
%A Joe Keane (jgk(AT)jgk.org)