Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 18 2018 08:23:13
%S 1,2,3,4,3,6,6,8,3,2,6,12,4,10,12,14,2,6,2,8,8,10,12,24,4,4,8,2,4,12,
%T 6,12,2,4,8,8,2,8,14,12,4,12,14,26,16,8,20,42,2,2,2,4,6,18,4,6,2,6,10,
%U 22,8,26,40,8,2,4,6,8,8,16,12,18,2,8,18,4,6,14,18,34,2,2,4,6,4,10,12,16,4
%N a(n) = number of squarefree numbers among C(n,k), k=0..n.
%C The only odd numbers are at n = 0, 2, 4, and 8. So this sequence is essentially twice A238337. - _T. D. Noe_, Mar 07 2014
%H T. D. Noe, <a href="/A048276/b048276.txt">Table of n, a(n) for n = 0..5000</a>
%F a(n) = n+1-A048277(n). - _R. J. Mathar_, Jan 18 2018
%e If n=20, then C(20, k) is squarefree for k = 0,2,4,8,12,16,18,20, that is, for 8 cases of k, so a(20)=8.
%p A048276 := proc(n)
%p local a,k ;
%p a := 0 ;
%p for k from 0 to n do
%p if issqrfree(binomial(n,k)) then
%p a := a+1 ;
%p end if;
%p end do:
%p a ;
%p end proc:
%p seq(A048276(n),n=0..40) ; # _R. J. Mathar_, Jan 18 2018
%t Table[Length[Select[Binomial[n, Range[0, n]], SquareFreeQ[#] &]], {n, 0, 100}]
%o (PARI) a(n) = sum(k=0, n, issquarefree(binomial(n, k))); \\ _Michel Marcus_, Dec 19 2013
%Y Cf. A005117, A046098, A048277, A238337.
%K nonn
%O 0,2
%A _Labos Elemer_