login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest palindrome greater than n in bases n and n+1.
27

%I #39 Jun 30 2019 10:39:52

%S 6643,10,46,67,92,121,154,191,232,277,326,379,436,497,562,631,704,781,

%T 862,947,1036,1129,1226,1327,1432,1541,1654,1771,1892,2017,2146,2279,

%U 2416,2557,2702,2851,3004,3161,3322,3487,3656,3829,4006,4187,4372,4561

%N Smallest palindrome greater than n in bases n and n+1.

%C From _A.H.M. Smeets_, Jun 19 2019: (Start)

%C In the following, dig(expr) stands for the digit that represents the value of expression expr, and . stands for concatenation.

%C As for the naming of this sequence, the trivial 1 digit palindromes 0..dig(n-1) are excluded.

%C If a number m is palindromic in bases n and n+1, then m has an odd number of digits when represented in base n.

%C All three digit numbers in base n, that are palindromic in bases n and n+1 are given by:

%C 101_3 22_4 for n = 3,

%C 232_n 1.dig(n).1_(n+1)

%C 343_n 2.dig(n-1).2_(n+1)

%C up to and including

%C dig(n-2).dig(n-1).dig(n-2)_n dig(n-3).4.dig(n-3)_(n+1) for n > 3, and

%C dig(n-1).0.dig(n-1)_n dig(n-3).5.dig(n-3)_(n+1) for n > 4.

%C Let d_L(n) be the number of integers with L digits in base n (L being odd), being palindromic in bases n and n+1, then:

%C d_1(n) = n for n >= 2 (see above),

%C d_3(n) = n-2 for n >= 5 (see above),

%C d_5(n) = n-1 for n >= 7 and n == 1 (mod 3),

%C d_5(n) = n-4 for n >= 7 and n in {0, 2} (mod 3), and

%C it seems that d_7(n) is of order O(n^2*log(n)) for n large enough. (End)

%H Colin Barker, <a href="/A048268/b048268.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 2n^2 + 3n + 2 for n >= 4 (which is 232_n and 1n1_(n+1)).

%F a(n) = A130883(n+1) for n > 3. - _Robert G. Wilson v_, Oct 08 2014

%F From _Colin Barker_, Jun 30 2019: (Start)

%F G.f.: x^2*(6643 - 19919*x + 19945*x^2 - 6684*x^3 + 19*x^4) / (1 - x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.

%F (End)

%e a(14) = 2*14^2 + 3*14 + 2 = 436, which is 232_14 and 1e1_15.

%t Do[ k = n + 2; While[ RealDigits[ k, n + 1 ][ [ 1 ] ] != Reverse[ RealDigits[ k, n + 1 ][ [ 1 ] ] ] || RealDigits[ k, n ][ [ 1 ] ] != Reverse[ RealDigits[ k, n ][ [ 1 ] ] ], k++ ]; Print[ k ], {n, 2, 75} ]

%t palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; f[n_] := Block[{k = n + 2}, While[ !palQ[k, n] || !palQ[k, n + 1], k++ ]; k]; Table[ f[n], {n, 2, 48}] (* _Robert G. Wilson v_, Sep 29 2004 *)

%o (PARI) isok(j, n) = my(da=digits(j,n), db=digits(j,n+1)); (Vecrev(da)==da) && (Vecrev(db)==db);

%o a(n) = {my(j = n); while(! isok(j, n), j++); j;} \\ _Michel Marcus_, Nov 16 2017

%o (PARI) Vec(x^2*(6643 - 19919*x + 19945*x^2 - 6684*x^3 + 19*x^4) / (1 - x)^3 + O(x^50)) \\ _Colin Barker_, Jun 30 2019

%Y Cf. A029965, A029966, A048269, A060792, A097928, A097929, A097930, A097931, A099145, A099146, A099147, A099153.

%K nonn,easy,base

%O 2,1

%A Ulrich Schimke (ulrschimke(AT)aol.com)

%E More terms from _Robert G. Wilson v_, Aug 14 2000