login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let (p1,p2), (p3,p4) be pairs of twin primes with p1*p2=p3+p4-1; sequence gives values of p4.
4

%I #7 Sep 29 2015 14:48:57

%S 19,73,883,2593,180001,206083,388963,2268451,2836963,3612673,6329683,

%T 6415363,10342153,18800713,28486153,32080051,40878883,89753203,

%U 97050313,127552393,154844803,183169801,230953033

%N Let (p1,p2), (p3,p4) be pairs of twin primes with p1*p2=p3+p4-1; sequence gives values of p4.

%H Charles R Greathouse IV, <a href="/A047979/b047979.txt">Table of n, a(n) for n = 1..10000</a>

%e E.g. 5*7=17+19-1,11*13=71+73-1.

%o (PARI) list(lim)=my(v=List(),p=3,r); forprime(q=5,sqrtint(lim\1*2-2)+1, if(q-p==2 && isprime(r=p*q\2) && isprime(r+2), listput(v,r+2)); p=q); Vec(v) \\ _Charles R Greathouse IV_, Sep 29 2015

%o (PARI) is(n)=my(p=sqrtint(2*n-3)); p*(p+2)==2*n-3 && isprime(n) && isprime(n-2) && isprime(p) && isprime(p+2) \\ _Charles R Greathouse IV_, Sep 29 2015

%Y Cf. A047976-A047978.

%K nonn

%O 1,1

%A _Naohiro Nomoto_