Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #165 Jul 12 2024 21:58:47
%S 1,1,3,7,25,81,331,1303,5937,26785,133651,669351,3609673,19674097,
%T 113525595,664400311,4070168161,25330978113,163716695587,
%U 1075631907655,7296866339961,50322142646161,356790528924523,2570964805355607,18983329135883665,142389639792952801,1091556096587136051
%N a(n) = a(n-1) + 2*(n-1)*a(n-2).
%C Related to partially ordered sets. - Detlef Pauly (dettodet(AT)yahoo.de), Sep 25 2003
%C The number of partial permutation matrices P in GL_n with P^2=0. Alternatively, the number of orbits of the Borel group of upper triangular matrices acting by conjugation on the set of matrices M in GL_n with M^2=0. - Brian Rothbach (rothbach(AT)math.berkeley.edu), Apr 16 2004
%C Number of ways to use the elements of {1..n} once each to form a collection of sequences, each having length 1 or 2. - Bob Proctor, Apr 18 2005
%C Hankel transform is A108400. - _Paul Barry_, Feb 11 2008
%C This is also the number of subsets of equivalent ways to arrange the elements of n pairs, when equivalence is defined under the joint operation of (optional) reversal of elements combined with permutation of the labels and the subset maps to itself. - _Ross Drewe_, Mar 16 2008
%C Equals inverse binomial transform of A000898. - _Gary W. Adamson_, Oct 06 2008
%C a(n) is also the moment of order n for the measure of density exp(-(x-1)^2/4)/(2*sqrt(Pi)) over the interval -oo..oo. - _Groux Roland_, Mar 26 2011
%C The n-th term gives the number of fixed-point-free involutions in S_n^B, the group of permutations on the set {-n,...,-1,1,2,...,n}. - _Matt Watson_, Jul 26 2012
%C From _Peter Bala_, Dec 03 2017: (Start)
%C a(n+k) == a(n) (mod k) for all n and k. Hence for each k, the sequence a(n) taken modulo k is a periodic sequence and the exact period divides k. Cf. A115329.
%C More generally, the same divisibility property holds for any sequence with an e.g.f. of the form F(x)*exp(x*G(x)), where F(x) and G(x) are power series with integer coefficients and G(0) = 1. See the Bala link for a proof. (End)
%H Vincenzo Librandi, <a href="/A047974/b047974.txt">Table of n, a(n) for n = 0..200</a>
%H T. Amdeberhan, V. de Angelis, A. Dixit, V. H. Moll and C. Vignat, <a href="http://dx.doi.org/10.1063/1.4836778">From sequences to polynomials and back, via operator orderings</a>, J. Math. Phys. 54, 123502 (2013); <a href="http://www.tulane.edu/~vhm/papers_html/ordering1.pdf">Alternative copy</a>
%H Peter Bala, <a href="/A047974/a047974_1.pdf">Integer sequences that become periodic on reduction modulo k for all k</a>
%H Jonathan Burns, <a href="http://knot.math.usf.edu/data/SimpleAssemblyTable.txt">Assembly Graph Words - Single Transverse Component (Counts)</a>; <a href="http://shell.cas.usf.edu/~saito/DNAweb/SimpleAssemblyTable.txt">Alternative copy</a>
%H Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche and Masahico Saito, <a href="http://dx.doi.org/10.1016/j.dam.2013.01.003">Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination</a>, Discrete Applied Mathematics, Volume 161, Issues 10-11, July 2013, Pages 1378-1394; <a href="http://jtburns.myweb.usf.edu/assembly/papers/Graphs_and_DNA_Recomb_2011.pdf">Alternative copy</a>.
%H Jonathan Burns and Tilahun Muche, <a href="http://arxiv.org/abs/1105.2926">Counting Irreducible Double Occurrence Words</a>, arXiv preprint arXiv:1105.2926 [math.CO], 2011.
%H Samuele Giraudo, <a href="https://arxiv.org/abs/1709.08416">Combalgebraic structures on decorated cliques</a>, arXiv:1709.08416 [math.CO], 2017; and <a href="https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2017/15%20Giraudo.html">also</a>, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8.
%H T. Halverson and M. Reeks, <a href="http://arxiv.org/abs/1302.6150">Gelfand Models for Diagram Algebras</a>, arXiv preprint arXiv:1302.6150 [math.RT], 2013.
%H A. Khruzin, <a href="https://arxiv.org/abs/math/0008209">Enumeration of chord diagrams</a>, arXiv:math/0008209 [math.CO], 2000.
%H G. Latouche and P. G. Taylor, <a href="https://doi.org/10.1007/s11134-009-9153-6">A stochastic fluid model for an ad hoc mobile network</a>, Queueing Syst. 63, No. 1-4, 109-129 (2009), eq. (1).
%H R. A. Proctor, <a href="https://arxiv.org/abs/math/0606404">Let's Expand Rota's Twelvefold Way for Counting Partitions!</a>, arXiv:math/0606404 [math.CO], 2006-2007.
%H J. Quaintance and H. Kwong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Kwong/kwong6.html">Permutations and combinations of colored multisets</a>, JIS 13 (2010) #10.2.6.
%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%H <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>
%F E.g.f.: exp(x^2+x). - _Len Smiley_, Dec 11 2001
%F Binomial transform of A001813 (with interpolated zeros). - _Paul Barry_, May 09 2003
%F a(n) = Sum_{k=0..n} C(k,n-k)*n!/k!. - _Paul Barry_, Mar 29 2007
%F a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*(2k)!/k!; - _Paul Barry_, Feb 11 2008
%F G.f.: 1/(1-x-2*x^2/(1-x-4*x^2/(1-x-6*x^2/(1-x-8*x^2/(1-... (continued fraction). -_Paul Barry_, Apr 10 2009
%F E.g.f.: Q(0); Q(k) = 1+(x^2+x)/(2*k+1-(x^2+x)*(2*k+1)/((x^2+x)+(2*k+2)/Q(k+1)))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 24 2011
%F a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. Cf. A000085 and A115329. - _Peter Bala_, Dec 07 2011
%F a(n) ~ 2^(n/2 - 1/2)*exp(sqrt(n/2) - n/2 - 1/8)*n^(n/2). - _Vaclav Kotesovec_, Oct 08 2012
%F E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + (1+x)/(k+1)/(1-x/(x+1/E(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 26 2013
%F a(n) = i^(-n)*H_{n}(i/2) with i the imaginary unit and H_{n} the Hermite polynomial of degree n. - _Alyssa Byrnes_ and C. Vignat, Jan 31 2013
%F E.g.f.: -Q(0)/x where Q(k) = 1 - (1+x)/(1 - x/(x - (k+1)/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Mar 06 2013
%F G.f.: 1/Q(0), where Q(k) = 1 + x*2*k - x/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Apr 17 2013
%F E.g.f.: E(0)-1-x-x^2, where E(k) = 2 + 2*x*(1+x) - 8*k^2 + x^2*(1+x)^2*(2*k+3)*(2*k-1)/E(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Dec 21 2013
%F E.g.f.: Product_{k>=1} 1/(1 + (-x)^k)^(mu(k)/k). - _Ilya Gutkovskiy_, May 26 2019
%F a(n) = Sum_{k=0..floor(n/2)} 2^k*B(n, k), where B are the Bessel numbers A100861. - _Peter Luschny_, Jun 04 2021
%p seq( add(n!/((n-2*k)!*k!), k=0..floor(n/2)), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
%p with(combstruct):seq(count(([S,{S=Set(Union(Z,Prod(Z,Z)))},labeled],size=n)),n=0..30); # Detlef Pauly (dettodet(AT)yahoo.de), Sep 25 2003
%p A047974 := n -> I^(-n)*orthopoly[H](n, I/2):
%p seq(A047974(n), n=0..26); # _Peter Luschny_, Nov 29 2017
%t Range[0, 23]!*CoefficientList[ Series[ Exp[x*(1-x^2)/(1 - x)], {x, 0,23 }], x] - (* _Zerinvary Lajos_, Mar 23 2007 *)
%t Table[I^(-n)*HermiteH[n, I/2], {n, 0, 23}] - (* _Alyssa Byrnes_ and C. Vignat, Jan 31 2013 *)
%o (MATLAB) N = 18; A = zeros(N,1); for n = 1:N; a = factorial(n); s = 0; k = 0; while k <= floor(n/2); b = factorial(n - 2*k); c = factorial(k); s = s + a/(b*c); k = k+1; end; A(n) = s; end; disp(A); % _Ross Drewe_, Mar 16 2008
%o (PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(x^2+x))) \\ _Joerg Arndt_, May 04 2013
%o (Magma) [n le 2 select 1 else Self(n-1) + 2*(n-2)*Self(n-2): n in [1..40]]; // _G. C. Greubel_, Jul 12 2024
%o (SageMath) [(-i)^n*hermite(n,i/2) for n in range(41)] # _G. C. Greubel_, Jul 12 2024
%Y Row sums of A067147.
%Y Column k=2 of A359762.
%Y Cf. A000085, A000680, A000898, A001147, A001813, A100861, A108400, A115329, A132101.
%Y Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), this sequence (q=1), A115329 (q=2), A293720 (q=4).
%K nonn
%O 0,3
%A _N. J. A. Sloane_