login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Distance of n-th prime to nearest square.
5

%I #36 Apr 27 2022 19:06:00

%S 1,1,1,2,2,3,1,3,2,4,5,1,5,6,2,4,5,3,3,7,8,2,2,8,3,1,3,7,9,8,6,10,7,5,

%T 5,7,12,6,2,4,10,12,5,3,1,3,14,2,2,4,8,14,15,5,1,7,13,15,12,8,6,4,17,

%U 13,11,7,7,13,14,12,8,2,6,12,18,17,11,3,1,9,19,20,10,8,2,2,8,16,20,21

%N Distance of n-th prime to nearest square.

%C Conjecture: a(n) < sqrt(prime(n)) and lim_{n->infinity} a(n)/sqrt(prime(n)) = 1, where prime(n) is the n-th prime. - _Ya-Ping Lu_, Nov 29 2021

%H T. D. Noe, <a href="/A047972/b047972.txt">Table of n, a(n) for n = 1..1000</a>

%F For each prime, find the closest square (preceding or succeeding); subtract, take absolute value.

%e For 13, 9 is the preceding square, 16 is the succeeding. 13-9 = 4, 16-13 is 3, so the distance is 3.

%t a[n_] := (p = Prime[n]; ns = p+1; While[ !IntegerQ[ Sqrt[ns++]]]; ps = p-1; While[ !IntegerQ[ Sqrt[ps--]]]; Min[ ns-p-1, p-ps-1]); Table[a[n], {n, 1, 90}] (* _Jean-François Alcover_, Nov 18 2011 *)

%t Table[Apply[Min, Abs[p - Through[{Floor, Ceiling}[Sqrt[p]]]^2]], {p, Prime[Range[90]]}] (* _Jan Mangaldan_, May 07 2014 *)

%t Min[Abs[#-Through[{Floor,Ceiling}[Sqrt[#]]]^2]]&/@Prime[Range[100]] (* More concise version of program immediately above *) (* _Harvey P. Dale_, Dec 04 2019 *)

%t Rest[Table[With[{s=Floor[Sqrt[p]]},Abs[p-Nearest[Range[s-2,s+2]^2,p]]],{p,Prime[ Range[ 100]]}]//Flatten] (* _Harvey P. Dale_, Apr 27 2022 *)

%o (Python)

%o from sympy import integer_nthroot, prime

%o def A047972(n):

%o p = prime(n)

%o a = integer_nthroot(p,2)[0]

%o return min(p-a**2,(a+1)**2-p) # _Chai Wah Wu_, Apr 03 2021

%Y Cf. A047973.

%K easy,nonn,nice

%O 1,4

%A _Enoch Haga_, Dec 11 1999