Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Mar 23 2020 21:23:26
%S 1,2,6,24,120,719,5003,39429,344837,3291590,33835114,370531683,
%T 4285711539,51990339068,657723056000,8636422912277,117241501095189,
%U 1639974912709122,23570308719710838,347217077020664880,5231433025400049936,80466744544235325387
%N Number of permutations in S_n with longest increasing subsequence of length <= 5.
%H Alois P. Heinz, <a href="/A047890/b047890.txt">Table of n, a(n) for n = 1..250</a>
%H F. Bergeron and F. Gascon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/CYT/cyt.html">Counting Young tableaux of bounded height</a>, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
%H Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, <a href="https://arxiv.org/abs/2001.00393">Stieltjes moment sequences for pattern-avoiding permutations</a>, arXiv:2001.00393 [math.CO], 2020.
%H Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, <a href="http://arxiv.org/abs/1504.02513">The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r</a>, arXiv:1504.02513, 2015.
%H Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0097-3165(90)90060-A">Symmetric functions and P-recursiveness</a>, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
%H Nathaniel Shar, <a href="https://pdfs.semanticscholar.org/98e3/71b675789ed6ec4f9c9cd82e2dee9ca79399.pdf">Experimental methods in permutation patterns and bijective proof</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
%H <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a>
%F a(n) ~ 9 * 5^(2*n + 25/2) / (512 * n^12 * Pi^2). - _Vaclav Kotesovec_, Sep 10 2014
%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
%p +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
%p end:
%p g:= proc(n, i, l)
%p `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
%p end:
%p a:= n-> g(n, 5, []):
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Apr 10 2012
%p # second Maple program
%p a:= proc(n) option remember; `if`(n<6, n!, ((-375+400*n+843*n^2
%p +322*n^3+35*n^4)*a(n-1) +225*(n-1)^2*(n-2)^2*a(n-3)
%p -(259*n^2+622*n+45)*(n-1)^2*a(n-2))/ ((n+6)^2*(n+4)^2))
%p end:
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Sep 26 2012
%t h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 5], {n, 1, 30}] (* _Jean-François Alcover_, Mar 10 2014, after _Alois P. Heinz_ *)
%Y A column of A047888. Cf. A005802, A052399.
%Y Column k=5 of A214015.
%K nonn,easy
%O 1,2
%A Eric Rains (rains(AT)caltech.edu), _N. J. A. Sloane_
%E More terms from _Naohiro Nomoto_, Mar 01 2002
%E More terms from _Alois P. Heinz_, Apr 10 2012