login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(3,n), array T given by A047848.
8

%I #25 Aug 29 2024 22:39:30

%S 1,2,8,44,260,1556,9332,55988,335924,2015540,12093236,72559412,

%T 435356468,2612138804,15672832820,94036996916,564221981492,

%U 3385331888948,20311991333684,121871948002100,731231688012596,4387390128075572,26324340768453428,157946044610720564,947676267664323380

%N a(n) = T(3,n), array T given by A047848.

%C n-th difference of a(n), a(n-1), ..., a(0) is 5^(n-1) for n=1, 2, 3, ...

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-6).

%F a(n) = (6^n + 4)/5. - _Ralf Stephan_, Feb 14 2004

%F From _Philippe Deléham_, Oct 05 2009: (Start)

%F a(0) = 1, a(1) = 2, a(n) = 7*a(n-1) - 6*a(n-2) for n > 1.

%F G.f.: (1 - 5*x)/(1 - 7*x + 6*x^2). (End)

%F a(n) = 6*a(n-1) - 4 (with a(0)=1). - _Vincenzo Librandi_, Aug 06 2010

%F exp(x)*(exp(5*x) + 4)/5. - _Elmo R. Oliveira_, Aug 29 2024

%p a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=6*a[n-1]+1 od: seq(a[n]+1, n=0..20); # _Zerinvary Lajos_, Mar 20 2008

%Y Cf. A047848.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_

%E a(21)-a(24) from _Elmo R. Oliveira_, Aug 29 2024