login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^(2*n)*(3^(2*n)-1)*Bernoulli(2*n)/(2*n).
2

%I #20 Sep 08 2022 08:44:57

%S 6,-54,2106,-179334,26414586,-5957217414,1906398972666,

%T -821369346492294,458382160232420346,-321645776191296739974,

%U 277173760840187306341626,-287758284647458145849816454,354245505704926834826124160506,-510230879113388713374134585497734

%N a(n) = 3^(2*n)*(3^(2*n)-1)*Bernoulli(2*n)/(2*n).

%D J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 283.

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%t Table[3^(2 n) (3^(2 n) - 1) BernoulliB[2 n] / (2 n), {n, 25}] (* _Vincenzo Librandi_, Apr 08 2020 *)

%o (PARI) a(n) = 3^(2*n)*(3^(2*n)-1)*bernfrac(2*n)/(2*n); \\ _Michel Marcus_, Mar 07 2020

%o (Magma) [3^(2*n)*(3^(2*n) - 1)*Bernoulli(2*n) / (2*n):n in [1..30]]; // _Vincenzo Librandi_, Apr 08 2020

%K sign

%O 1,1

%A _N. J. A. Sloane_