Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 10 2023 05:19:58
%S 1,0,1242,11916,72252,266544,807090,2006856,4603284,8924940,17571816,
%T 30168396,51799212,82147608,132245676,191541024,294596676,410924988,
%U 590219898,800792568,1123700904,1442103768,1991926080,2519984088,3314316426,4155999192,5427108108
%N Theta series of 14-dimensional lattice Kappa_{14} with minimal norm 4.
%C Theta series is an element of the space of modular forms on Gamma_1(18) with Kronecker character -3 in modulus 18, weight 7, and dimension 22 over the integers. - _Andy Huchala_, May 07 2023
%D J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
%H Andy Huchala, <a href="/A047628/b047628.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/KAPPA14.1.html">Home page for this lattice</a>
%o (Magma)
%o prec := 80;
%o S := SymmetricMatrix([4,2,4,0,-2,4,0,-2,0,4,0,0,-2,0,4,-2,-2,0,0,0,4,-2,-1,1,0,0,0,4,-2,-1,0,-1,1,2,2,4,-2,-2,0,1,1,2,2,2,4,-2,0,-2,0,1,1,0,0,0,4,1,1,0,0,0,-2,0,-1,-1,-2,4,-2,-1,0,0,0,1,1,1,1,1,-2,4,0,-1,1,1,0,-1,1,0,0,-1,1,-1,4,0,0,0,0,0,0,1,0,1,-1,1,-1,1,4]);
%o L := LatticeWithGram(S);
%o T<q> := ThetaSeries(L, 42);
%o M := ThetaSeriesModularFormSpace(L);
%o B := Basis(M, prec);
%o Coefficients(&+[Coefficients(T)[2*i-1]*B[i] :i in [1..22]]); // _Andy Huchala_, May 07 2023
%Y Cf. A029897, A362875, A362876, A362877, A362878, A362879, A362880.
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Andy Huchala_, May 07 2023