Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #19 May 15 2023 08:45:34
%S 1,0,1212,11584,70380,261120,776800,1989504,4398252,8878080,16788312,
%T 29833920,50078944,80686080,126457920,191702144,281524140,403691520,
%U 570110556,793005120,1074444600,1431982080,1903243680,2494537344,3204056800,4082872320,5185620120
%N Theta series of 14-dimensional integral laminated lattice LAMBDA14.3 with minimal norm 4.
%C This theta series is an element of the space of modular forms on Gamma_1(4) with Kronecker character, weight 7, and dimension 4. - _Andy Huchala_, May 15 2023
%H Andy Huchala, <a href="/A047626/b047626.txt">Table of n, a(n) for n = 0..10000</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/LAMBDA14.3.html">Home page for this lattice</a>
%o (Magma)
%o prec := 30;
%o gram := [4,2,4,0,-2,4,0,-2,0,4,0,0,-2,0,4,-2,-2,0,0,0,4,0,0,0,0,0,-2,4,0,0,0,0,0,0,-2,4,0,0,0,0,1,-1,0,0,4,0,0,0,0,-1,0,0,0,0,4,0,0,0,0,0,0,0,0,-2,0,4,0,1,-2,0,1,0,0,-1,1,0,0,4,-1,0,-1,-1,1,0,1,0,1,1,0,0,4,-2,-1,0,0,0,1,0,-1,1,1,0,1,0,4];
%o S := SymmetricMatrix(gram);
%o L := LatticeWithGram(S);
%o T := ThetaSeriesModularForm(L);
%o Coefficients(PowerSeries(T,prec)); // _Andy Huchala_, May 15 2023
%Y Cf. A023937, A046958, A047627.
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Andy Huchala_, May 15 2023