login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {3, 5} mod 8.
20

%I #63 Nov 22 2024 09:06:45

%S 3,5,11,13,19,21,27,29,35,37,43,45,51,53,59,61,67,69,75,77,83,85,91,

%T 93,99,101,107,109,115,117,123,125,131,133,139,141,147,149,155,157,

%U 163,165,171,173,179,181,187,189,195,197,203,205,211,213,219,221,227,229

%N Numbers that are congruent to {3, 5} mod 8.

%C Numbers k for which Jacobi symbol J(2,k) = -1, so 2 (as well as 2^k) is not a square mod k. - _Antti Karttunen_, Aug 27 2005, corrected by _Jianing Song_, Nov 05 2019, see also A329095.

%C Numbers n whose multiplicative order modulo 2^k is 2^(k - 2) for k >= 4. For k = 3, the numbers whose multiplicative order modulo 8 is 2 are in sequence A047484. - _Jianing Song_, Apr 29 2018

%H Muniru A Asiru, <a href="/A047621/b047621.txt">Table of n, a(n) for n = 1..5000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 8*n - a(n-1) - 8 (with a(1) = 3). - _Vincenzo Librandi_, Aug 06 2010

%F G.f.: x*(3 + 2*x + 3*x^2) / ( (1 + x)*(x - 1)^2 ). - _R. J. Mathar_, Oct 08 2011

%F A089911(3*a(n)) = 10. - _Reinhard Zumkeller_, Jul 05 2013

%F a(n) = 8*floor((n - 1)/2) + 4 + (-1)^n. - _Gary Detlefs_, Dec 03 2018

%F From _Franck Maminirina Ramaharo_, Dec 03 2018: (Start)

%F a(n) = 4*n - 2 - (-1)^n.

%F E.g.f.: 3 - (2 - 4*x)*exp(x) - exp(-x). (End)

%F a(n + 2) = a(n) + 8. - _David A. Corneth_, Dec 03 2018

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8. - _Amiram Eldar_, Dec 11 2021

%F From _Amiram Eldar_, Nov 22 2024: (Start)

%F Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/8) (1/A144981).

%F Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/8) (A101464). (End)

%t LinearRecurrence[{1, 1, -1}, {3, 5, 11}, 100] (* _Jean-François Alcover_, Jul 31 2018 *)

%o (Haskell)

%o a047621 n = a047621_list !! (n-1)

%o a047621_list = 3 : 5 : map (+ 8) a047621_list

%o -- _Reinhard Zumkeller_, Jul 05 2013

%o (GAP) a:=[3];; for n in [2..60] do a[n]:=8*n-a[n-1]-8; od; a; # _Muniru A Asiru_, Dec 04 2018

%Y Row 1 of A112070. Complement of A047522 relative to A005408. Primes in this sequence: A003629.

%Y Subsequence of A329095.

%Y Cf. A047522, A066507, A101464, A144981.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_