login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {0, 1, 2, 3, 5} mod 8.
1

%I #32 Mar 07 2020 08:54:38

%S 0,1,2,3,5,8,9,10,11,13,16,17,18,19,21,24,25,26,27,29,32,33,34,35,37,

%T 40,41,42,43,45,48,49,50,51,53,56,57,58,59,61,64,65,66,67,69,72,73,74,

%U 75,77,80,81,82,83,85,88,89

%N Numbers that are congruent to {0, 1, 2, 3, 5} mod 8.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).

%F G.f.: x^2*(3*x^4 + 2*x^3 + x^2 + x + 1)/((x-1)^2*(x^4 + x^3 + x^2 + x + 1)). [_Colin Barker_, Jul 02 2012]

%t Flatten[Table[8n + {0, 1, 2, 3, 5}, {n, 0, 15}]] (* _Alonso del Arte_, Jan 13 2014 *)

%o (PARI) a(n)=(n-1)\5<<3+(n-1)%5+(n%5==0) \\ _Charles R Greathouse IV_, Sep 06 2011

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_