login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers that are congruent to {0, 1, 2, 6, 7} mod 8.
1

%I #17 May 30 2016 00:25:58

%S 0,1,2,6,7,8,9,10,14,15,16,17,18,22,23,24,25,26,30,31,32,33,34,38,39,

%T 40,41,42,46,47,48,49,50,54,55,56,57,58,62,63,64,65,66,70,71,72,73,74,

%U 78,79,80,81,82,86,87,88,89,90,94,95,96,97,98,102,103,104

%N Numbers that are congruent to {0, 1, 2, 6, 7} mod 8.

%H G. C. Greubel, <a href="/A047555/b047555.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).

%F From _Chai Wah Wu_, May 29 2016: (Start)

%F a(n) = a(n-1) + a(n-5) - a(n-6).

%F G.f.: x^2*(x^4 + x^3 + 4*x^2 + x + 1)/(x^6 - x^5 - x + 1). (End)

%t Select[Range[0,100], MemberQ[{0,1,2,6,7}, Mod[#,8]]&] (* _Harvey P. Dale_, Jul 27 2011 *)

%t LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 6, 7, 8}, 50] (* _G. C. Greubel_, May 29 2016 *)

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_