Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:44:57
%S 0,1,2,3,5,6,8,9,10,11,13,14,16,17,18,19,21,22,24,25,26,27,29,30,32,
%T 33,34,35,37,38,40,41,42,43,45,46,48,49,50,51,53,54,56,57,58,59,61,62,
%U 64,65,66,67,69,70,72,73,74,75,77,78,80,81,82,83,85,86,88
%N Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 8.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).
%F G.f.: x^2*(1+x+x^2+2*x^3+x^4+2*x^5) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - _R. J. Mathar_, Dec 07 2011
%F From _Wesley Ivan Hurt_, Jun 16 2016: (Start)
%F a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
%F a(n) = (24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18.
%F a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
%F Sum_{n>=2} (-1)^n/a(n) = 3*(sqrt(2)-1)*Pi/16 + (8-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - _Amiram Eldar_, Dec 26 2021
%p A047450:=n->(24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18: seq(A047450(n), n=1..100); # _Wesley Ivan Hurt_, Jun 16 2016
%t Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 8]] &] (* _Wesley Ivan Hurt_, Jun 16 2016 *)
%o (Magma) [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 5, 6]]; // _Wesley Ivan Hurt_, Jun 16 2016
%Y Cf. A047420, A047602.
%K nonn,easy
%O 1,3
%A _N. J. A. Sloane_