Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:44:57
%S 0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24,28,29,30,31,35,36,37,38,42,
%T 43,44,45,49,50,51,52,56,57,58,59,63,64,65,66,70,71,72,73,77,78,79,80,
%U 84,85,86,87,91,92,93,94,98,99,100,101,105,106,107,108,112
%N Numbers that are congruent to {0, 1, 2, 3} mod 7.
%C Nonnegative m for which floor(2*m/7) = 2*floor(m/7). [_Bruno Berselli_, Dec 03 2015]
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F a(n) = 7*floor(n/4) + (n mod 4), with offset 0 and a(0) = 0. - _Gary Detlefs_, Mar 09 2010
%F G.f.: x^2*(1+x+x^2+4*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 04 2011
%F From _Wesley Ivan Hurt_, May 23 2016: (Start)
%F a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
%F a(n) = (14*n-23-3*i^(2*n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8, where i=sqrt(-1).
%F a(2k) = A047356(k), a(2k-1) = A047352(k). (End)
%F E.g.f.: (16 + 3*(sin(x) - cos(x)) + (7*x - 10)*sinh(x) + (7*x - 13)*cosh(x))/4. - _Ilya Gutkovskiy_, May 24 2016
%p A047361:=n->(14*n-23-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047361(n), n=1..100); # _Wesley Ivan Hurt_, May 23 2016
%t Flatten[#+{0,1,2,3}&/@(7*Range[0,20])] (* _Harvey P. Dale_, Jan 17 2013 *)
%o (PARI) concat(0, Vec(x^2*(1+x+x^2+4*x^3)/((1+x)*(x^2+1)*(x-1)^2) + O(x^100))) \\ _Altug Alkan_, Dec 09 2015
%o (Magma) [n : n in [0..150] | n mod 7 in [0..3]]; // _Wesley Ivan Hurt_, May 23 2016
%Y Cf. A047352, A047356.
%K nonn,easy
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Wesley Ivan Hurt_, May 23 2016