login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047354
Numbers that are congruent to {0, 1, 2} mod 7.
2
0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, 23, 28, 29, 30, 35, 36, 37, 42, 43, 44, 49, 50, 51, 56, 57, 58, 63, 64, 65, 70, 71, 72, 77, 78, 79, 84, 85, 86, 91, 92, 93, 98, 99, 100, 105, 106, 107, 112, 113, 114, 119, 120, 121, 126, 127, 128, 133, 134, 135, 140, 141
OFFSET
1,3
FORMULA
a(n) = 7*floor(n/3)+(n mod 3), with offset 0 and a(0)=0. - Gary Detlefs, Mar 09 2010
From R. J. Mathar, Mar 29 2010: (Start)
G.f.: x^2*(1+x+5*x^2)/((1+x+x^2) * (x-1)^2).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
a(n+1) = Sum_{k>=0} A030341(n,k)*b(k) with b(0)=1 and b(k)=7*3^(k-1) for k>0. - Philippe Deléham, Oct 24 2011
From Wesley Ivan Hurt, Jun 08 2016: (Start)
a(n) = (21*n-33-12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-5, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End)
a(n) = n + 4*floor((n-1)/3) - 1. - Bruno Berselli, Feb 06 2017
MAPLE
seq(7*floor(n/3)+(n mod 3), n=0..60); # Gary Detlefs, Mar 09 2010
MATHEMATICA
Flatten[{#, #+1, #+2}&/@(7Range[0, 20])] (* Harvey P. Dale, Mar 05 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0..2]]; // Wesley Ivan Hurt, Jun 08 2016
CROSSREFS
Cf. A030341.
Cf. similar sequences with formula n+i*floor(n/3) listed in A281899.
Sequence in context: A287515 A260581 A179772 * A037455 A020675 A317303
KEYWORD
nonn,easy
STATUS
approved