Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:44:56
%S 0,2,3,4,5,6,7,9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26,27,28,
%T 30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,
%U 56,58,59,60,61,62,63,65,66,67,68,69,70,72,73,74,75,76,77
%N Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.
%C Complement of A016993. - _Michel Marcus_, Sep 10 2015
%H Vincenzo Librandi, <a href="/A047306/b047306.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).
%F G.f.: x^2*(2+x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - _R. J. Mathar_, Oct 25 2011
%F From _Wesley Ivan Hurt_, Sep 10 2015: (Start)
%F a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
%F a(n) = n + floor((n-2)/6). (End)
%F From _Wesley Ivan Hurt_, Jun 15 2016: (Start)
%F a(n) = (42*n-27+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36.
%F a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-5, a(6k-5) = 7k-7. (End)
%p A047306:=n->n+floor((n-2)/6): seq(A047306(n), n=1..100); # _Wesley Ivan Hurt_, Sep 10 2015
%t Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 6}, Mod[#, 7]] &] (* _Vincenzo Librandi_, Oct 22 2014 *)
%t LinearRecurrence[{1,0,0,0,0,1,-1},{0,2,3,4,5,6,7},70] (* _Harvey P. Dale_, May 28 2018 *)
%o (PARI) concat(0, Vec(x^2*(2+x+x^2+x^3+x^4+x^5)/((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2) + O(x^30))) \\ _Michel Marcus_, Oct 22 2014
%o (Magma) [n: n in [0..100] | n mod 7 in [0] cat [2..6]]; // _Vincenzo Librandi_, Oct 22 2014
%Y Cf. A016993.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Michel Marcus_, Oct 22 2014