The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047140 Array read by diagonals: T(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no up-step crosses the line y=4x/3. (Thus a path crosses the line only at lattice points and on right-steps.). 11
 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 4, 4, 1, 1, 3, 2, 8, 5, 1, 1, 4, 5, 10, 13, 6, 1, 1, 5, 9, 15, 23, 19, 7, 1, 1, 6, 14, 24, 38, 42, 26, 8, 1, 1, 7, 20, 38, 62, 80, 68, 34, 9, 1, 1, 8, 27, 58, 38, 142, 148, 102, 43, 10, 1, 1, 9, 35, 85, 96, 180, 290 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1325 EXAMPLE Array begins: ====================================== h\k | 0 1 2 3 4 5 6 7 ----+--------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 2 1 2 3 4 5 6 ... 2 | 1 3 4 2 5 9 14 20 ... 3 | 1 4 8 10 15 24 38 58 ... 4 | 1 5 13 23 38 62 38 96 ... 5 | 1 6 19 42 80 142 180 96 ... 6 | 1 7 26 68 148 290 470 566 ... 7 | 1 8 34 102 250 540 1010 1576 ... ... PROG (PARI) A(h, k=h)={my(M=matrix(h+1, k+1, i, j, 1)); for(h=1, h, for(k=1, k, M[1+h, 1+k] = M[h, 1+k] + if(3*k>4*h && 3*(k-1)<4*h, 0, M[1+h, k]))); M} { my(T=A(10)); for(i=1, #T, print(T[i, ]))} \\ Andrew Howroyd, Jan 19 2020 CROSSREFS Cf. A047141, A047142, A047143, A047144, A047145, A047146, A047147, A047148, A047149. Cf. A047110, A047130, A047150. Sequence in context: A111603 A180178 A136178 * A047150 A280489 A289356 Adjacent sequences: A047137 A047138 A047139 * A047141 A047142 A047143 KEYWORD nonn,tabl AUTHOR Clark Kimberling. Definition revised Dec 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 07:24 EDT 2024. Contains 371782 sequences. (Running on oeis4.)