login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A046958
Theta series of 14-dimensional integral laminated lattice LAMBDA14.2 with minimal norm 4.
3
1, 0, 1228, 11264, 73260, 245760, 830944, 1853440, 4670892, 8355840, 17837048, 27874304, 53205728, 75939840, 134305088, 179025920, 299207596, 379944960, 605758444, 740441088, 1141582264, 1347747840, 2022362656, 2329679872, 3403939552, 3842703360, 5509653560
OFFSET
0,3
COMMENTS
This theta series is an element of the space of modular forms on Gamma_1(8) with Kronecker character -4 in modulus 8, weight 7, and dimension 8. - Andy Huchala, May 15 2023
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
PROG
(Magma)
prec := 20;
gram := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, -2, 4, 0, 0, 0, 0, 0, 0, -2, 4, 0, 0, 0, 0, 1, -1, 0, 0, 4, 0, 0, 0, 0, -1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 4, 0, 1, -2, 0, 1, 0, 0, -1, 1, 0, 0, 4, -1, 0, -1, -1, 1, 0, 1, 0, 1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 0, -1, 4];
S := SymmetricMatrix(gram);
L := LatticeWithGram(S);
T := ThetaSeriesModularForm(L);
Coefficients(PowerSeries(T, prec)); // Andy Huchala, May 15 2023
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Andy Huchala, May 15 2023
STATUS
approved