Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #75 Oct 28 2023 11:43:54
%S 1,3,7,15,21,63,127,63,73,889,1533,3255,7905,11811,32767,255,273,
%T 253921,413385,761763,5461,4194303,2088705,2097151,10961685,298935,
%U 125829105,17895697,402653181,10845877,2097151,1023,1057,255652815,3681400539
%N a(n) = period of x^n + x + 1 over GF(2), i.e., the smallest integer m>0 such that x^n + x + 1 divides x^m + 1 over GF(2).
%C Also, the multiplicative order of x modulo the polynomial x^n + x + 1 (or its reciprocal x^n + x^(n-1) + 1) over GF(2).
%C For n>1, let S_0 = 11...1 (n times) and S_{i+1} be formed by applying D to last n bits of S_i and appending result to S_i, where D is the first difference modulo 2 (e.g., a,b,c,d,e -> a+b,b+c,c+d,d+e). The period of the resulting infinite string is a(n). E.g., n=4 produces 1111000100110101111..., so a(4) = 15.
%C Also, the sequence can be constructed in the same way as A112683, but using the recurrence x(i) = 2*x(i-1)^2 + 2*x(i-1) + 2*x(i-n)^2 + 2*x(i-n) mod 3.
%C From _Ben Branman_, Aug 12 2010: (Start)
%C Additionally, the pseudorandom binary sequence determined by the recursion
%C If x<n+1, then f(x)=1. If x>n, f(x)=f(x-1) XOR f(x-n).
%C The resulting sequence f(x) has period a(n).
%C For example, if n=4, then the sequence f(x) is has period 15: 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0
%C so a(4)=15. (End)
%H Max Alekseyev, <a href="/A046932/b046932.txt">Table of n, a(n) for n = 1..1223</a>
%H Tej Bade, Kelly Cui, Antoine Labelle, and Deyuan Li, <a href="https://arxiv.org/abs/2008.02762">Ulam Sets in New Settings</a>, arXiv:2008.02762 [math.CO], 2020. See also <a href="http://math.colgate.edu/~integers/u102/u102.pdf">Integers</a> (2020) Vol. 20, #A102.
%H L. Bartholdi, <a href="http://arXiv.org/abs/math.CO/9910056">Lamps, Factorizations and Finite Fields</a>, Amer. Math. Monthly (2000), 107(5), 429-436.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/csolve/seqmod3.pdf">Periodicity in Sequences Mod 3</a> [Broken link]
%H Steven R. Finch, <a href="https://web.archive.org/web/20150911081920/http://www.people.fas.harvard.edu/~sfinch/csolve/seqmod3.pdf">Periodicity in Sequences Mod 3</a> [From the Wayback machine]
%H International Math Olympiad, <a href="http://www.artofproblemsolving.com/Forum/viewtopic.php?t=62190">Problem 6, 1993</a>.
%H <a href="/index/Tri#trinomial">Index entries for sequences related to trinomials over GF(2)</a>
%F a(2^k) = 2^(2*k) - 1.
%F a(2^k + 1) = 2^(2*k) + 2^k + 1.
%F Conjecture: a(2^k - 1) = 2^a(k) - 1. [See Bartholdi, 2000]
%F More general conjecture: a( (2^(k*m) - 1) / (2^m-1) ) = (2^(a(k)*m) - 1) / (2^m-1). For m=1, it would imply Bartholdi conjecture. - _Max Alekseyev_, Oct 21 2011
%t (* This program is not suitable to compute a large number of terms. *)
%t a[n_] := Module[{f, ff}, f[x_] := f[x] = If[x<n+1, 1, f[x-1] ~BitXor~ f[x-n]]; ff = Array[f, 10^5]; FindTransientRepeat[ff, 2] // Last // Length]; Array[a, 15] (* _Jean-François Alcover_, Sep 10 2018, after _Ben Branman_ *)
%o (PARI) a(n) = {pola = Mod(1,2)*(x^n+x+1); m=1; ok = 0; until (ok, polb = Mod(1,2)*(x^m+1); if (type(polb/pola) == "t_POL", ok = 1; break;); if (!ok, m++);); return (m);} \\ _Michel Marcus_, May 20 2013
%Y Cf. A010760, A055061, A073639, A100730, A112683.
%K nonn,easy,nice
%O 1,2
%A _Russell Walsmith_
%E More terms from _Dean Hickerson_
%E Entry revised and b-file supplied by _Max Alekseyev_, Mar 14 2008
%E b-file extended by _Max Alekseyev_, Nov 15 2014; Aug 17 2015