login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A046658.
2

%I #8 Jul 29 2024 06:23:14

%S 1,4,18,85,411,2013,9933,49236,244750,1218888,6077644,30329434,

%T 151439158,756452890,3779590010,18888255205,94405918355,471899946985,

%U 2359022096225,11793343217935,58960151969255,294776293579255

%N Row sums of triangle A046658.

%H G. C. Greubel, <a href="/A046885/b046885.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = 2*5^(n-1) - A046714(n-1) = (A046748(n) - 5^(n-1))/2.

%F G.f.: x*(2 - c(x))/(1-5*x), where c(x) is the g.f. of A000108 (Catalan numbers).

%F Inhomogeneous recursion: a(n) = 5*a(n-1) - C(n-1), n >= 2, a(1)=1; C(n) = A000108(n) (Catalan).

%F Homogeneous recursion: a(n) = (3*(3*n-2)/n)*a(n-1) - (10*(2*n-3)/n)*a(n-2), n >= 3, a(1)=1, a(2)=4.

%t Rest@CoefficientList[Series[Sqrt[1-4*x]*(1-Sqrt[1-4*x])/(2*(1-5*x)), {x,0,40}], x] (* _G. C. Greubel_, Jul 28 2024 *)

%o (Magma)

%o [n le 1 select 1 else 5*Self(n-1) - Catalan(n-1): n in [1..40]]; // _G. C. Greubel_, Jul 28 2024

%o (SageMath)

%o @CachedFunction

%o def A046885(n): return 1 if n==1 else 5*A046885(n-1) - catalan_number(n-1)

%o [A046885(n) for n in range(1,41)] # _G. C. Greubel_, Jul 28 2024

%Y Cf. A000108, A046658, A046714, A046748.

%K easy,nonn

%O 1,2

%A _Wolfdieter Lang_