login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k*2^k+(k-1) is prime.
1

%I #30 Dec 04 2024 09:32:23

%S 1,4,6,30,34,94,216,1120,1438,3370,5062,6714,30666,36966,169240

%N Numbers k such that k*2^k+(k-1) is prime.

%C The corresponding primes are given in A046848.

%C a(16) > 2*10^5. - _Michael S. Branicky_, Dec 04 2024

%t Select[Range[10^4], PrimeQ[#*2^# + (# - 1)] &] (* _Michael De Vlieger_, Mar 02 2015 *)

%o (PARI) isok(n) = isprime(n*2^n+(n-1)); \\ _Michel Marcus_, Oct 12 2014

%o (PARI) for(n=1,10^6,if(ispseudoprime(n*2^n+(n-1)),print1(n,", "))); \\ _Joerg Arndt_, Mar 02 2015

%Y Cf. A046848.

%K hard,more,nonn

%O 1,2

%A _Felice Russo_

%E a(8)-a(9) from _Michel Marcus_, Oct 12 2014

%E a(10)-a(12) (pseudoprimes) from _Joerg Arndt_, Mar 02 2015

%E a(13)-a(14) from _Michael S. Branicky_, Jan 21 2023

%E a(15) from _Michael S. Branicky_, Dec 04 2024