Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jan 05 2025 19:51:35
%S 1,1,2,1,6,5,1,12,32,15,1,20,110,175,52,1,30,280,945,1012,203,1,42,
%T 595,3465,8092,6230,877,1,56,1120,10010,40992,70756,40819,4140,1,72,
%U 1932,24570,156072,479976,638423,283944,21147,1,90,3120,53550,487704,2350950,5660615,5971350
%N Triangle of generalized Stirling numbers of 2nd kind.
%H Tilman Piesk, <a href="/A046817/b046817.txt">First 100 rows, flattened</a>
%H R. Fray, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-4/fray.pdf">A generating function associated with the generalized Stirling numbers</a>, Fib. Quart. 5 (1967), 356-366.
%F a(n, k) = Sum_{i=k..n} S2(n, i)*S2(i, k).
%F E.g.f.: exp(exp(exp(x*y)-1)-1)^(1/y). - _Vladeta Jovovic_, Dec 14 2003
%e Triangle begins:
%e k = 0 1 2 3 4 sum
%e n
%e 1 1 1
%e 2 1 2 3
%e 3 1 6 5 12
%e 4 1 12 32 15 60
%e 5 1 20 110 175 52 358
%t a[n_, k_] = Sum[StirlingS2[n, i]*StirlingS2[i, k], {i, k, n}]; Flatten[Table[a[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 53]] (* _Jean-François Alcover_, Apr 26 2011 *)
%Y Diagonals give A000558, A000559, A000110, A002378, etc.
%Y Row sums give A000258.
%Y Horizontal mirror triangle is A039810 (matrix square of Stirling2).
%K tabl,nonn,easy,nice,changed
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _David W. Wilson_, Jan 13 2000