Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Mar 13 2023 11:57:30
%S 1,2,2,4,2,6,2,8,4,8,4,24,2,8,8,16,2,32,2,48,12,16,4,96,8,8,8,64,8,96,
%T 2,32,16,8,16,512,4,8,16,192,4,144,8,128,64,16,8,768,4,128,32,128,8,
%U 160,64,256,16,64,4,4608,2,8,96,128,8,384,4,128,16,512,8,8192,8,32,128
%N Number of divisors of 2^n-1.
%C a(0) cannot be defined because 0's divisors are an infinite set (every number is a divisor of 0.)
%H Amiram Eldar, <a href="/A046801/b046801.txt">Table of n, a(n) for n = 1..1206</a> (terms 1..500 from T. D. Noe)
%e a(120) = 73728 since 2^120-1 has that many divisors.
%p a:= n-> numtheory[tau](2^n-1):
%p seq(a(n), n=1..80); # _Alois P. Heinz_, Aug 23 2021
%t Table[DivisorSigma[0, 2^n - 1], {n, 120}] (* _Michael De Vlieger_, Mar 26 2015 *)
%o (PARI) a(n) = numdiv(2^n-1); \\ _Michel Marcus_, Dec 15 2013
%o (Magma) [DivisorSigma(0, 2^n - 1): n in [1..100]]; // _Vincenzo Librandi_, Mar 27 2015
%o (Python)
%o from sympy import divisor_count
%o def A046801(n): return divisor_count((1<<n)-1) # _Chai Wah Wu_, Mar 13 2023
%Y Cf. A000043 (n such that a(n) = 2), A000225 (2^n-1).
%K nonn
%O 1,2
%A _Labos Elemer_
%E Typo in example fixed by _Reinhard Zumkeller_, May 15 2010
%E a(0) removed by _J. Lowell_, Mar 26 2015