%I #9 Sep 16 2019 17:04:31
%S 1,1,1,1,1,2,2,2,2,4,5,5,5,9,11,12,12,19,26,28,29,40,55,62,64,81,113,
%T 132,139,163,221,265,284,320,421,514,563,619,783,965,1074,1169,1432,
%U 1765,1996,2167,2575,3159,3613,3931,4566,5552,6410,7006,7990,9605
%N Number of partitions of n with equal number of parts congruent to each of 0, 2 and 3 (mod 4).
%H Andrew Howroyd, <a href="/A046768/b046768.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (Sum_{k>=0} x^(9*k)/(Product_{j=1..k} 1 - x^(4*j))^3)/(Product_{j>=0} 1 - x^(4*j+1)). - _Andrew Howroyd_, Sep 16 2019
%o (PARI) seq(n)={Vec(sum(k=0, n\9, x^(9*k)/prod(j=1, k, 1 - x^(4*j) + O(x*x^n))^3)/prod(j=0, n\4, 1 - x^(4*j+1) + O(x*x^n)))} \\ _Andrew Howroyd_, Sep 16 2019
%Y Cf. A046765.
%K nonn
%O 0,6
%A _David W. Wilson_