login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

"Norep emirps": primes with distinct digits which remain prime when reversed.
16

%I #41 Nov 02 2022 23:14:51

%S 2,3,5,7,13,17,31,37,71,73,79,97,107,149,157,167,179,347,359,389,701,

%T 709,739,743,751,761,769,907,937,941,953,967,971,983,1069,1097,1237,

%U 1249,1259,1279,1283,1409,1429,1439,1453,1487,1523,1583,1597,1657,1723,1753

%N "Norep emirps": primes with distinct digits which remain prime when reversed.

%C There are no 10-digit terms because their sum of digits would be 45 and thus the number would be divisible by 3.

%C There are 25332 terms in this sequence, the last of which is 987653201, as found by _Harvey P. Dale_. - see Martin Gardner's column in Scientific American.

%H Nathaniel Johnston, <a href="/A046732/b046732.txt">Table of n, a(n) for n = 1..25332</a> (full sequence).

%H Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?curio_id=&amp;number_id=&amp;rank=&amp;short=987653201">987653201</a>, Prime Curios!.

%H Martin Gardner, <a href="https://www.jstor.org/stable/24966473">Patterns in primes are a clue to the strong law of small numbers</a>, Mathematical Games, Scientific American, Vol. 243, No. 4, September, 1980.

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_059.htm">Puzzle 59. Six and the nine digits primes (by Jud McCranie)</a>, The Prime Puzzles and Problems Connection.

%p read(transforms): A046732 := proc(n) option remember: local d,k,p,distdig: if(n=1)then return 2: fi: p:=procname(n-1): do p:=nextprime(p): if(isprime(digrev(p)))then d:=convert(p,base,10): distdig:=true: for k from 0 to 9 do if(numboccur(d,k)>1)then distdig:=false: break: fi: od: if(distdig)then return p: fi: fi: od: end: seq(A046732(n),n=1..52); # _Nathaniel Johnston_, May 29 2011

%t Select[Prime[Range[280]], Length[Union[x = IntegerDigits[#]]] == Length[x] && PrimeQ[FromDigits[Reverse[x]]] &] (* _Jayanta Basu_, Jun 28 2013 *)

%o (Python)

%o from sympy import prime, isprime

%o A046732 = [p for p in (prime(n) for n in range(1,10**3)) if len(str(p)) == len(set(str(p))) and isprime(int(str(p)[::-1]))] # _Chai Wah Wu_, Aug 14 2014

%Y Intersection of A007500 and A029743.

%Y Cf. A006567, A003684, A007628, A048051, A048052, A048053, A048054, A048895.

%K easy,nonn,fini,full,base

%O 1,1

%A _Enoch Haga_

%E More terms from _Jud McCranie_.